Multi-Level Modeling with HLM S. J. Ross 香港大学 Sept. 2006

Rationale

Educational research has traditionally been focused on the individual learner independently of the context in which the learner is situated. Efforts to aggregate contexts typically lead to estimation errors. Recent modeling advances have yielded more accurate methods of analyzing the impact of contexts on individuals, and the impact of organizational factors on the contexts. These are the *levels* of multi-level modeling.

Core Concepts

Individual learners are nested in contexts. A context can be a classroom or a school. Organizations have a nesting hierarchy with larger organizational units containing smaller ones. As in all linear models, there is an outcome of interest (Y) for each individual. The multi-level approach aims to examine factors affecting Y at the individual level, and factors influencing differences between the contextual variable (classes or schools). The outcome is thus Y_{ij}, i=individual, j=context.

Two Level Models

Level 1 contains information about individual learners: attitude, motivation, aptitude, prior achievement, proficiency, grade, gender, etc.

Level 2 contains information about context: type of class, level, ability stream, average achievement, type of instruction used, teacher qualification, etc.

Three Level Models

Level 1 contains information about learners, often over time: Y1,Y2,Y3. These can be repeated measures over time in a time-series design measure growth.

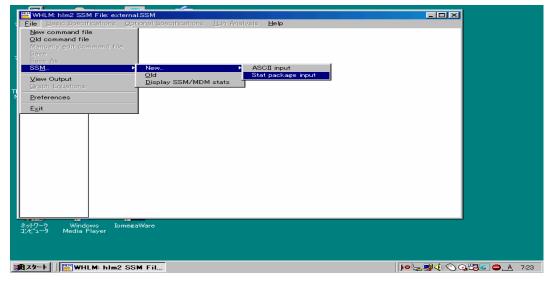
Level 2 contains information about context: type of class, level, ability stream, average achievement, type of instruction used, teacher qualification, etc.

Level 3 contains information about the organization of the contexts: a program of intervention, public vs private, centralized vs laissez faire, etc.

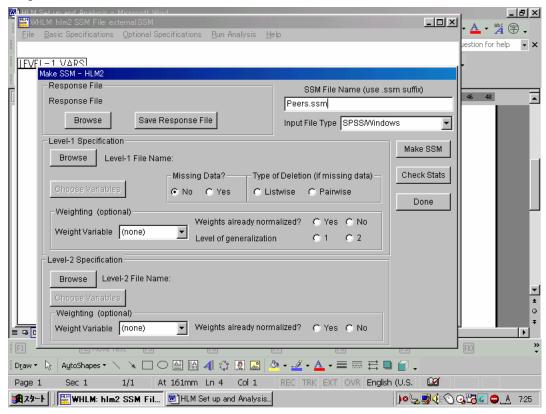
Two Level Models

Step 1 Check Level 1 file structure. The key field should be left-most and indicate the nesting structure at level 1. Here, 'sect' (classes) are the larger nested unit..

	ev1 - SPSS <u>E</u> dit <u>V</u> iew		tor Transform	<u>A</u> nalyze	<u>G</u> raphs <u>I</u>	<u>J</u> tilities <u>V</u>	<u>V</u> indow	<u>H</u> elp					_	BX
2 6	I 🕘 💻	S C	上 📴	M			¥0							
1 : sex			ŀ											
	sect	sex	gpa	toefl	Fscor1	Fscor2	Var	var	Var	Var	Var	Var	Var	
1		1.00	66.00	383.00	.31	.74								
2		1.00		387.00	.62	.10								
3	1.00	2.00		363.00	-1.76	1.42								
4		2.00	75.00	400.00	77	.98								
5		2.00	77.00	370.00	-2.61	-1.92								
6		1.00	74.00	390.00	-1.19	40								
7		2.00		340.00	67	-1.24								
8		2.00		373.00	23	50								
9		2.00		360.00	06	95								
10		2.00		413.00	-1.50	06								
11		2.00		350.00	49	.11								
12		2.00		343.00	-1.67	.71								
13		1.00		373.00	1.39	11								
14		2.00		317.00	.10	26								
15	1.00	1.00	70.00	323.00	-2.06	1.11								
16		1.00	82.00	390.00	84	16								
17		1.00	74.00	383.00	40	.58								
18		1.00		357.00	.83	1.04								
19		1.00		403.00	65	06								
20		2.00		407.00	.71	-1.50								
21	2.00	2.00		403.00	08	.83								
22		2.00		393.00	32	.22								
23		2.00		400.00	95	.57								
24		2.00		370.00	1.81	84								
25		2.00		337.00	90	.20								
26		1.00		420.00	.63	1.03								
27		1.00		417.00	-1.31	.92								
28		1.00		433.00	74	-1.81								
I ⊧Î	Data Vie	w 🖓 Vai	riable View	100.00						1			1	ÞĖ
				SPSS Prod	cessor is re	eady								
11 79	- F B]H	ILM Set up	p and Analys	sis 🛃 3.	5 インチ FD	(A:)		HELev1 -	SPSS Dat.		L	00"	2 — A	7:32


- In the Level 1 file, variables of interest at the individual student level are held. The left-most variable 'sect' indicates that the first 15 students are nested in Class 1.
- Three individual difference variables are listed for each student: gender, previous achievement (GPA) and initial proficiency (TOEFL). These may serve as covariates or as moderators for the outcomes of interest.
- The right-most variables Fscor1 and Fscor2 are 'factor scores' for each individual student indicating his or her own tendency to agree with a 10 item survey about the usefulness and validity of PEER ASSESSMENT. These serve as the two dependent variables in the multi-level analysis.

Step 2: Check Level 2 file structure. The left-most field should be the key variable for nesting at both Level 1 and Level 2. Here 'Sect' indicates classes. Fac1 and Fac2 are class averages for the PEER ASSESSMENT attitude survey. COHORT refers to those classes experiencing a PA training module vs classes that did not experience one.

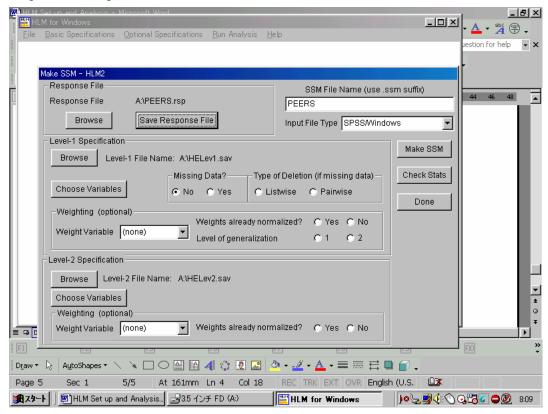

	5 III	80 28	10.1	- 0 44	机而日		30										
ect			1														
- 23	sect	fac1	fac2	ophort	teacher	WOL	7947	WOL	701	WW	Var		794	VOZ	700	WOR	T .
1	1	42.95	49,83	1	1												
2	2	48.70	51.61	1	2												
3	3	47.11	46.79	1	3												
4	4	46.53	52.31	1	4												
5	5	45.15	48.29	1	5												_
.6	6	50.50	52.88		6				_								
7	7	54.50	50.56	1	3		_										_
- 8	8	54.02 47.54	54.04 49.92		4												-
9	9	47.54	52.79	1	6		-										-
10	10	48.82	51.49		D		-										-
12	12	47.97	51.89														-
13	13	53.66	49.82				-				-						-
14	14	49.64	52.26		0		-										-
15	15	41.11	46.73		7	-	-										-
16	16	44.57	53.20		10		-		-		-						-
17	18	43.60	57.70		11	1		-									-
18	19	52.14	49,90	1	7	-	-				-						-
19	20	48.07	53.32		10		-	-									-
20	22	44.49	55.18	1	0		-										-
21	23	47.68	55.77	1	7		-						-		-		-
22	24	51.52	55.76	1	10	1	-					1					-
23	25	53.60	47.72	0	7			-									-
24	26	50.89	49.02	0	12		_										-
25	27	49.21	49.74	0	13	1	-							-			-
26	28	59.14	51.99	0	14												
27	29	54.28	47.34	0	15												-
28	30	55.55	49.77	0	3												-
29	32	57.44	\$3.35	0	14												
30	33	48.08	37.91	0	7												-
31		59.19	49.54	0	15												-
32	36	51.00	48,45		13												
33	37	47.53	42.66	0	12												
34	40	49.82	41.84	0	17												
35	41	54.10	43.89	0	18												
36	42	55.31	49.25	0	12												
37	45	52.12	46.54	0	18												
38	46	53.70	52.32	0	12		1										-
39	48	49.70	41.84	0	17												
40																	-
-41																	-
42																	
43																	

• Level 2 variables describe features of the sections (classes), not the individuals nested within the classes. These can be dummy codes (e.g. cohort identifier), or can be averages for the class variables (e.g. SES, Proficiency, Motivation, etc). They should define the 'context' in which individuals are nested.

Step 3 Conversion to HLM files. Define the source file (SPSS, SYSTAT, etc)

Step 4 Locate data sets

Step 5. Browse Level 1 file first and identify the key field. Specify variables for analysis.

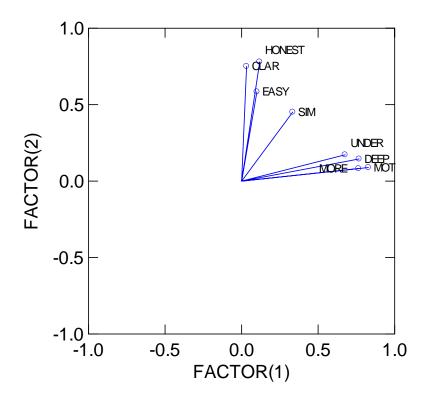

Make SSM – HLI	240			Jestion for help
Response Fi		COM E	ile Name (use .ssm suffi	
Response Fi				44 46 48
Choose var	iables - HLM2		e SPSS/Windows	
SECT	D ID ID IN SSM	🗖 D 🗖 in SSM	e jsess/windows	
L SEX	D D 🔽 in SSM	D 🗖 in SSM	Mak	e SSM
- GPA	ID 🔽 in SSM	D 🗖 in SSM		
TOEFL	D D 🔽 in SSM	D 🗖 in SSM	ssing data) Che	ck Stats
- FSCOR1	ID 🔽 in SSM	D 🗖 in SSM	wise	one
FSCOR2		D 🗖 in SSM		
	D D in SSM	D 🗖 in SSM	s C No	
	D D in SSM	D 🗖 in SSM	© 2	
	D 🗖 in SSM	D 🗖 in SSM		
	D D in SSM	🗖 ID 🗖 in SSM		
	D D in SSM	🗖 D 🗖 in SSM		
	D D in SSM	🗖 D 🗖 in SSM		
			s 🔿 No	μ,
	je 1 of 1 🔳 🕨	OK Cancel		FID
	∞ • • • • • • • • • • • • • • • • • • •	्रि 🧕 🔜 🔌 र 🚄 र 🗛	·■≡≓∎∂.	

Step 6. Repeat process for Level 2 file

🙀 і ні м 🤉	Set up and Analysis -	Microsoft Word						. –	BX
HL 🔛	M for Windows							• 🛕 • 🏄 🕃	2
Eile	Basic Specifications	Optional Specifications	<u>R</u> un Analysis	<u>H</u> elp					
=								Jestion for help	• ×
								-	
	Make SSM - HLM2								
6	Open Data File				? ×] e .ssm su	iffix)		
4	ファイルの場所①:	🛃 3.5 インチ FD (A:)	-] 🗈 💆				44 46 48	
	HELev1					ndows	•		
	HELev2								
	Hemain					M	ake SSM		
	Tchfact								
						L Cł	neck Stats		
							Done		
	ファイル名(<u>N</u>):				開((<u>0</u>)				
	ファイルの種類(工):	SPSS/Windows files(*.SA	10	•	キャンセル				
		,							
		□ 読み取り専用ファイルとし)(m)(E)		ヘルプ(円)				
	Browse Leve	el-2 File Name:							
	Choose Variable	8							▼ ±
	-Weighting (optio								ō
					<u></u>				Ŧ
≣ 6 0	Weight Variable	(none) 🔽 We	lights aiready n	ormalized?	O Yes O No			-	
F1		10-21	101	1.1	101			[F10]	»
Draw -	AutoShapes • `		4 🗘 🛛 🖾	ð • 🚄	• <u>A</u> • = = :		•		
Page 4	Sec 1	4/4 At 174mm	Ln 6 Col 1	REC T	RK EXT OVR E	English (U.S	. 💷		
- - - - - -	HLM Set up a	and Analysis 🛃 3.5 イン:	f FD (A:)	HLM	for Windows	00	5 ₿ ∢ ⊙0	2 135 - A	8:06

Step 7 Select key field and Level 2 variables

Ман м	Set up and Analysis	– Microsoft Word					. L	BX
	LM for Windows						- A - 🏄 🛱	2
<u> </u>	Basic Specification	ns Optional Specification	s <u>R</u> un Analysis	<u>H</u> elp			Jestion for help	
							Jestion for help	- ×
							.F	
	Make SSM - HLM2							
E.	Response File-				File Name (use .s	sm suffix)	44 46 48	
-	Resnonse File			Inceno	-		44 46 48	<u> </u>
	Choose variabl	es - HLM2			e SPSS/Windo	ows 🔻		
	SECT	D ID II IN SSM		D D D in SSM	e (SPSS/Windo	JWS 🔳		
	FAC1	ID 🔽 in SSM		DD D in SSM		Make SSM		
						Make SSM		
	- FAC2	🗖 ID 🔽 in SSM		🗖 D 🗖 in SSM		Check Stats		
	COHORT	🗖 ID 🔽 in SSM		🔲 D 🔲 in SSM	ssing data) —	Check Stats		
				D D 🗖 in SSM	wise	Done		
						Done		1
					IS C NO			
		🗖 D 🗖 in SSM		🗖 D 🗖 in SSM	0.2			
		🗖 ID 🗖 in SSM		🔲 ID 🔲 in SSM				
	řu –	D D D in SSM		D D D in SSM				
				🗖 ID 🗖 in SSM				
	│ ॑ ॑							-
		🗖 D 🗖 in SSM		🗖 D 🗖 in SSM				±
		🗖 ID 🗖 in SSM		🔲 ID 🔲 in SSM				•
					S C NO		μ	. ₹
_		1 of 1	► OK	Cancel				»
F1 ·	- rage						FIO	÷
Draw 🔻	AutoShapes 🕶		🖪 🗘 🙎 🗠] 🍳 - 🚄 - 🛆		. 🗇 .		
Page	5 Sec 1	5/5 At 34mm	Ln 1 Col 1	REC TRK	EXT OVR Englis	h (U.S. 🛛 🗳		
መንድ	- 🖡 📋 🐻 HLM Set u	p and Analysis 🛃 3.5 イ	ンチ FD (A:)	HLM for	Windows)∘∖,⊴∢ ⊙	3 5 6 7	8:07


Step 8 Save Response file and check to make sure that the HLM files have been created

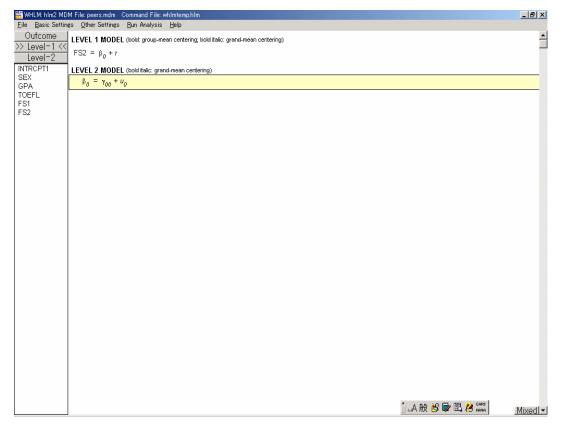
Important Points:

HLM requires two different data sets. Level 1 contains the outcomes data and individual level predictors/covariates of the outcome arranged in a row by column data set. Input can be via SPSS, SYSTAT, STATA, or ascii files. The second required file is for Level 2 data and contains covariates describing the context or institutional organizational structure: the school, class, teacher, or features of the nested Level 1 data such as SES, etc.

HLM Analysis. Example 1. Learner attitudes toward peer assessment are the object of interest. A survey is given to 569 undergraduates who recently experienced peer assessment. Students are nested in 39 classes. Teachers are assigned multiple class sections. Can learner attitudes towards peer assessment be influenced by 'innovation training'? In a contiguous cohort design, one cohort of learners does formative assessment over an academic year. The following year, another cohort does formative assessment, but receives modules designed to instruct the learners on how to do fair and accurate peer assessment. Does innovation training help?

Survey Factorial Structure

Factor Loadings Plot


<u>Factor 1</u> members: More PA is needed, PA is motivating, PA gives deep assessments, PA gives learners better understanding. <u>Factor 2</u> members: PA are honest, PA instructions are clear, PA is easy to do, PA is simple to implement. High scores imply agreement.

Peer Assessment Training

Do learners need peer-assessment training? Two cohorts of learners are compared. Cohort 1 experienced peer assessment prior to competing the <u>attitudes about peer</u> <u>assessment</u> survey. Cohort 2 got a regime of propaganda and instructions on how to do accurate and fair peer assessment. RQ: Is there a difference between the cohorts on their attitudes towards peer assessment?

HLM2 Set up

Let us assume that we are interested in between-class differences in Factor 2. We start with an unconditional model: there are no covariates at all. This is equivalent to a random effects analysis of variance (ANOVA).

The above model yields:

/hlm2 - メモ帳						
ファイル(E) 編集(E)		ルブ(田)				
Fixed Effe	ect	Coefficient	Standard Error			P-value
For INT INTRCPT2,		49.896221	0.666620	74.850	38	0.000
The outcome v	variable i	s FS2				
Final estimat (with robust		errors)				
Fixed Effe	ect		Standard		Approx.	
For INT INTRCPT2,	TRCPT1, BO GOO	49.896221	0.657943	75.837	38	0.000
Final estimat	tion of va	riance compone	nte:			
		Standard Deviation		df	Chi-square	P-value
INTRCPT1,	U0	3.30543 9.45632	10.92588	38		0.000
Statistics fo Deviance Number of est		covariance cc = 416 rameters = 2				
1						

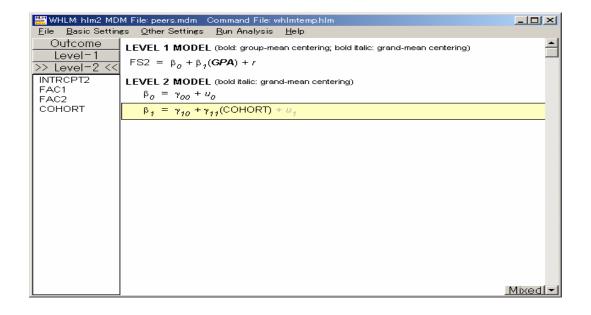
We can see as expected that the average standardized agreement across the 39 classes is 49.8 on the FS2 scale. We see also that there is considerable variation among the classes in agreement: not all of them see peer assessment as useful. We note also that 10.9/(89.4+10.9) or about 11% of the variance is between the classes. Why do classes differ?

Level 1 (student) factors.

We can now modify the unconditional model by adding Level 1 variables. We will test the hypothesis that relative prior student achievement and relative proficiency differences affect class mean differences in valuing peer assessment. In other words, do the normative environments *within* classes affect student valuing of peer assessment?

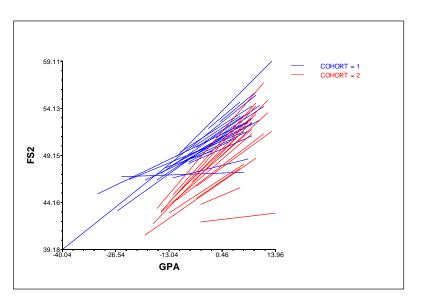
NTRCPT2 FAC1 FAC2 COHORT LEVEL 2 MODEL (toold italic: grand-mean centering) $\beta_0 = \gamma_{00} + u_0$ $\beta_1 = \gamma_{10} + u_1$ $\beta_2 = \gamma_{20} + u_2$ $\beta_1 = \gamma_{10} + u_1$ $\beta_2 = \gamma_{20} + u_2$ Mixed Mixed $\beta_2 = \gamma_{20} + u_2$ $\beta_2 = \gamma_{20} + u_2$ Mixed Image: state st	🖁 WHLM: hIm2 MDM			Analasi					l ×
$\frac{ \mathbf{v} v \mathbf{v} ^{-1}}{ \mathbf{x} ^{-2}}$ $\frac{ \mathbf{v} v \mathbf{v} ^{-1}}{ \mathbf{x} ^{-2}}$ $\frac{ \mathbf{x} v \mathbf{v} ^{-2}}{ \mathbf{x} v \mathbf{v} ^{-2}}$ $\frac{ \mathbf{x} v \mathbf{v} ^{-2}}{ \mathbf{x} v \mathbf{v} ^{-2}}$ $\frac{ \mathbf{x} v \mathbf{v} ^{-2}}{ \mathbf{x} v \mathbf{v} ^{-2}}$ $\frac{ \mathbf{x} v \mathbf{v} ^{-2}}{ \mathbf{x} v \mathbf{v} ^{-2}}$ $\frac{ \mathbf{x} v \mathbf{v} ^{-2}}{ \mathbf{x} v \mathbf{v} ^{-2}}$ $\frac{ \mathbf{x} v \mathbf{v} ^{-2}}{ \mathbf{x} v \mathbf{v} ^{-2}}$ $\frac{ \mathbf{x} v \mathbf{v} ^{-2}}{ \mathbf{x} v \mathbf{v} ^{-2}}$ $\frac{ \mathbf{x} v \mathbf{v} ^{-2}}{ \mathbf{x} v \mathbf{v} ^{-2}}$ $\frac{ \mathbf{x} v \mathbf{v} ^{-2}}{ \mathbf{x} v \mathbf{v} ^{-2}}$ $\frac{ \mathbf{x} v \mathbf{v} ^{-2}}{ \mathbf{x} v \mathbf{v} ^{-2}}$ $\frac{ \mathbf{x} v \mathbf{v} ^{-2}}{ \mathbf{x} v \mathbf{v} ^{-2}}$ $\frac{ \mathbf{x} v \mathbf{v} ^{-2}}{ \mathbf{x} v \mathbf{v} ^{-2}}$ $\frac{ \mathbf{x} v \mathbf{v} ^{-2}}{ \mathbf{x} v \mathbf{v} ^{-2}}$ $\frac{ \mathbf{x} v \mathbf{v} ^{-2}}{ \mathbf{x} v \mathbf{v} ^{-2}}}$ $\frac{ \mathbf{x} v \mathbf{v} ^{-2}}{ \mathbf{x} v \mathbf{v} ^{-2}}$ $\frac{ \mathbf{x} v \mathbf{v} ^{-2}}{ \mathbf{x} v \mathbf{v} ^{-2}}}$ $\frac{ \mathbf{x} v \mathbf{v} ^{-2}}{ \mathbf{x} v \mathbf{v} ^{-2}}}$ $\frac{ \mathbf{x} v \mathbf{v} ^{-2}}{ \mathbf{x} v \mathbf{v} ^{-2}}}$ $\frac{ \mathbf{x} v \mathbf{v} ^{-2}}{ \mathbf{x} v \mathbf{v} ^{-2}}}$ $\frac{ \mathbf{x} v \mathbf{v} ^{-2}}{ \mathbf{x} v \mathbf{v} ^{-2}}}$ $\frac{ \mathbf{x} v \mathbf{v} ^{-2}}{ \mathbf{x} v \mathbf{v} ^{-2}}}$ $\frac{ \mathbf{x} v \mathbf{v} ^{-2}}{ \mathbf{x} v \mathbf{v} ^{-2}}}$ $\frac{ \mathbf{x} v \mathbf{v} ^{-2}}{ \mathbf{x} v \mathbf{v} ^{-2}}}$ $\frac{ \mathbf{x} v \mathbf{v} ^{-2}}{ \mathbf{x} v \mathbf{v} ^{-2}}}$ $\frac{ \mathbf{x} v \mathbf{v} ^{-2}}{ \mathbf{x} v \mathbf{v} ^{-2}}}$ $\frac{ \mathbf{x} v \mathbf{v} ^{-2}}{ \mathbf{x} v \mathbf{v} ^{-2}}}$ $ \mathbf$		Uther Sett	ings <u>R</u> un	Analysi	s <u>H</u> eip				
$\frac{ \mathbf{eve} ^2 < \mathbf{v} ^2}{ \mathbf{P} ^2} = \frac{ \mathbf{v}_0 + \mathbf{v}_1 (\mathbf{eve}) + \mathbf{v}_2 (\mathbf{v} \mathbf{CPT} + \mathbf{v}) }{ \mathbf{P}_2 = \frac{ \mathbf{v}_0 + \mathbf{v}_0 }{ \mathbf{P}_2 = \frac{ \mathbf{P}_0 + \mathbf{v}_0 }{ \mathbf{P}_0 + \mathbf{v}_0 }}} $		EVEL 1 MC	DDEL (bold	l: group-i	mean cente	ring; bold	italic: grand-mean centeri	ing)	Ē
FACI FACI FAC2 FAC2 FAC2 FAC2 FAC3	>> Level-2 <<	$FS2 = \beta_0$	+ β ₁ (GPA	$+ \beta_2(a)$	toefl) +	· r			
FAC2 COHORT $ \begin{array}{c c c c c c c c c c c c c c c c c c c $		EVEL 2 MC	DDEL (bold	l italic: gr	and-mean c	entering)	I		
$\frac{1}{P_{1} = \gamma_{10} + u_{1}}$ $p_{2} = \gamma_{20} + u_{2}$ $\frac{1}{P_{2} = \gamma_{20} + u_{2}}$ $\frac{1}$		$\beta_0 = \gamma_0$	0 + 40						_
$\begin{array}{c c c c c c c c c c c c c c c c c c c $									_
Interfer Standard Aprox INTROPT2, E00 0.015522 0.015522 0.015522 0.015522 Interfer 0.015522 0.01532 0.01532 0.015522 Interfer 0.015522 0.01532 0.01532 0.01532 Interfer 0.015632 0.015632 0.015632 0.015632 Interfer 0.015632 0.015632 0.015632 0.015632 Interfer 0.015632 0.015632 0.015632 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Intermediate Image: State Intermediate Standard Intermediate Standard Fixed Effect Coefficient Error T-ratio Abprox. Fixed Effect Coefficient Error T-ratio Abprox. Fixed Effect Coefficient Error T-ratio Abprox. OF NIROPTI, B0 INTROPT2, G00 49.951522 0.262709 0.078982 3.326 38 INTROPT2, G10 0.262709 0.015532 0.013342 1.164 38 0.252 INTROPT2, G20 0.015532 0.013342 1.164 38 0.252 Intraction of variance components: andom Effect Standard Variance Component URCPT1, 00 Intermediation of variance components: andom Effect Standard Variance Intermediation 0.03388 0.00144 38 Standard Standard Variance Intermediation 0.0600 Intermediation 0.03388 Intermediation 0.0601 Intermediation 0.06038 Intermediation 0.0600 Intermediation 0.06038 Intermediation 0.0600 Intermediation 0.06038 Intermediation 0.0600 Intermediation 0.06038 Intermediation 0.0600 Interme		12 12	0 ~2						
Intermediate Image: State Intermediate Standard Intermediate Standard Fixed Effect Coefficient Error T-ratio Abprox. Fixed Effect Coefficient Error T-ratio Abprox. Fixed Effect Coefficient Error T-ratio Abprox. OF NIROPTI, B0 INTROPT2, G00 49.951522 0.262709 0.078982 3.326 38 INTROPT2, G10 0.262709 0.015532 0.013342 1.164 38 0.252 INTROPT2, G20 0.015532 0.013342 1.164 38 0.252 Intraction of variance components: andom Effect Standard Variance Component URCPT1, 00 Intermediation of variance components: andom Effect Standard Variance Intermediation 0.03388 0.00144 38 Standard Standard Variance Intermediation 0.0600 Intermediation 0.03388 Intermediation 0.0601 Intermediation 0.06038 Intermediation 0.0600 Intermediation 0.06038 Intermediation 0.0600 Intermediation 0.06038 Intermediation 0.0600 Intermediation 0.06038 Intermediation 0.0600 Interme									
Intermediate Image: State Intermediate Standard Intermediate Standard Fixed Effect Coefficient Error T-ratio Abprox. Fixed Effect Coefficient Error T-ratio Abprox. Fixed Effect Coefficient Error T-ratio Abprox. OF NIROPTI, B0 INTROPT2, G00 49.951522 0.262709 0.078982 3.326 38 INTROPT2, G10 0.262709 0.015532 0.013342 1.164 38 0.252 INTROPT2, G20 0.015532 0.013342 1.164 38 0.252 Intraction of variance components: andom Effect Standard Variance Component URCPT1, 00 Intermediation of variance components: andom Effect Standard Variance Intermediation 0.03388 0.00144 38 Standard Standard Variance Intermediation 0.0600 Intermediation 0.03388 Intermediation 0.0601 Intermediation 0.06038 Intermediation 0.0600 Intermediation 0.06038 Intermediation 0.0600 Intermediation 0.06038 Intermediation 0.0600 Intermediation 0.06038 Intermediation 0.0600 Interme									
Intermediate Image: State Intermediate Standard Intermediate Standard Fixed Effect Coefficient Error T-ratio Abprox. Fixed Effect Coefficient Error T-ratio Abprox. Fixed Effect Coefficient Error T-ratio Abprox. OF NIROPTI, B0 INTROPT2, G00 49.951522 0.262709 0.078982 3.326 38 INTROPT2, G10 0.262709 0.015532 0.013342 1.164 38 0.252 INTROPT2, G20 0.015532 0.013342 1.164 38 0.252 Intraction of variance components: andom Effect Standard Variance Component URCPT1, 00 Intermediation of variance components: andom Effect Standard Variance Intermediation 0.03388 0.00144 38 Standard Standard Variance Intermediation 0.0600 Intermediation 0.03388 Intermediation 0.0601 Intermediation 0.06038 Intermediation 0.0600 Intermediation 0.06038 Intermediation 0.0600 Intermediation 0.06038 Intermediation 0.0600 Intermediation 0.06038 Intermediation 0.0600 Interme									
Intermediate Image: State Intermediate Standard Intermediate Standard Fixed Effect Coefficient Error T-ratio Abprox. Fixed Effect Coefficient Error T-ratio Abprox. Fixed Effect Coefficient Error T-ratio Abprox. OF NIROPTI, B0 INTROPT2, G00 49.951522 0.262709 0.078982 3.326 38 INTROPT2, G10 0.262709 0.015532 0.013342 1.164 38 0.252 INTROPT2, G20 0.015532 0.013342 1.164 38 0.252 Intraction of variance components: andom Effect Standard Variance Component URCPT1, 00 Intermediation of variance components: andom Effect Standard Variance Intermediation 0.03388 0.00144 38 Standard Standard Variance Intermediation 0.0600 Intermediation 0.03388 Intermediation 0.0601 Intermediation 0.06038 Intermediation 0.0600 Intermediation 0.06038 Intermediation 0.0600 Intermediation 0.06038 Intermediation 0.0600 Intermediation 0.06038 Intermediation 0.0600 Interme									
Intermediate Image: State Intermediate Standard Intermediate Standard Fixed Effect Coefficient Error T-ratio Abprox. Fixed Effect Coefficient Error T-ratio Abprox. Fixed Effect Coefficient Error T-ratio Abprox. OF NIROPTI, B0 INTROPT2, G00 49.951522 0.262709 0.078982 3.326 38 INTROPT2, G10 0.262709 0.015532 0.013342 1.164 38 0.252 INTROPT2, G20 0.015532 0.013342 1.164 38 0.252 Intraction of variance components: andom Effect Standard Variance Component URCPT1, 00 Intermediation of variance components: andom Effect Standard Variance Intermediation 0.03388 0.00144 38 Standard Standard Variance Intermediation 0.0600 Intermediation 0.03388 Intermediation 0.0601 Intermediation 0.06038 Intermediation 0.0600 Intermediation 0.06038 Intermediation 0.0600 Intermediation 0.06038 Intermediation 0.0600 Intermediation 0.06038 Intermediation 0.0600 Interme									
Intermediate Image: State Intermediate Standard Intermediate Standard Fixed Effect Coefficient Error T-ratio Abprox. Fixed Effect Coefficient Error T-ratio Abprox. Fixed Effect Coefficient Error T-ratio Abprox. OF NIROPTI, B0 INTROPT2, G00 49.951522 0.262709 0.078982 3.326 38 INTROPT2, G10 0.262709 0.015532 0.013342 1.164 38 0.252 INTROPT2, G20 0.015532 0.013342 1.164 38 0.252 Intraction of variance components: andom Effect Standard Variance Component URCPT1, 00 Intermediation of variance components: andom Effect Standard Variance Intermediation 0.03388 0.00144 38 Standard Standard Variance Intermediation 0.0600 Intermediation 0.03388 Intermediation 0.0601 Intermediation 0.06038 Intermediation 0.0600 Intermediation 0.06038 Intermediation 0.0600 Intermediation 0.06038 Intermediation 0.0600 Intermediation 0.06038 Intermediation 0.0600 Interme									
INPERATING Implementation Inverse Implementation Inverse Implementation Pre-outcome variable is FS2 inal estimation of fixed effects with robust standard errors) Fixed Effect Coefficient Error T-ratio d.f. P-value or INTROPT, B0 INTROPT, 00 49.951522 0.628235 INTROPT, G00 49.951522 0.628235 or GFA slope, B1 0.262709 0.078982 INTROPT2, G10 0.262709 0.078982 3.326 inal estimation of variance components: andom Effect Standard INTROPT1, 00 3.08874 9.54029 38 50.48171 0.085 GPA slope, U1 0.20051 0.06787 38 50.27276 0.088 IPT1, 00 3.08874 9.54029 38 50.27276 0.088 IPEL slope, U2 0.03788 0.00144 38 52.41301 0.060 Ievel-1, R 9.16841 84.05981 entistics for current covariance comp									
INPERATING AULP (MERC) atx(Q) AULP(Q) re outcome variable is FS2 inal estimation of fixed effects standard With robust standard errors) Approx. Fixed Effect Coefficient Error T-ratio JINTROPT, B0 10000 INTROPT, G00 49.951522 0.262709 0.078982 3.326 38 0.000 0.262709 0.015532 0.013342 1.NTROPT2, G10 0.262709 0.015532 0.013342 1.NTROPT2, G20 0.015532 0.015532 0.013342 1.NTROPT2, G20 0.015532 0.013342 1.164 38 0.252 INTROPT1, 00 00 3.08874 9.54029 38 50.48171 0.085 GPA slope, U1 0.20051 0.06787 38 50.27276 0.088 IVEL slope, U2 0.03788 0.00144 38 52.41301 0.060 level-1, R 9.16841 84.05981 484.05981 48.05981 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
INPERATING AULP (MERC) atx(Q) AULP(Q) re outcome variable is FS2 inal estimation of fixed effects standard With robust standard errors) Approx. Fixed Effect Coefficient Error T-ratio JINTROPT, B0 10000 INTROPT, G00 49.951522 0.262709 0.078982 3.326 38 0.000 0.262709 0.015532 0.013342 1.NTROPT2, G10 0.262709 0.015532 0.013342 1.NTROPT2, G20 0.015532 0.015532 0.013342 1.NTROPT2, G20 0.015532 0.013342 1.164 38 0.252 INTROPT1, 00 00 3.08874 9.54029 38 50.48171 0.085 GPA slope, U1 0.20051 0.06787 38 50.27276 0.088 IVEL slope, U2 0.03788 0.00144 38 52.41301 0.060 level-1, R 9.16841 84.05981 484.05981 48.05981 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Intermediate Intermediate Intermediatition Intermediate <									
Improvement Improvement									
APUD WERE(0) #37(0) re outcome variable is FS2 inal estimation of fixed effects with robust standard errors) Fixed Effect Coefficient Error T-ratio A.F. P-value or INTROPTI. B0 INTROPT2, G00 49.951522 0.628235 Or CFA slope, B1 INTROPT2, G10 0.262709 0.078982 3.326 Or TUFEDF12, G20 0.015532 0.013842 1.164 INTROPT2, G20 0.015532 0.013842 1.164 38 0.252 inal estimation of variance components: andom Effect Standard Variance df Chi-square P-value OFPA slope, U1 0.28057 38 50.48171 0.088 0.088 OPA slope, U1 0.28051 0.06787 38 50.27276 0.088 OFEL slope, U2 0.03798 0.00144 38 52.41301 0.060 level-1. R 9.16841 84.059881 1.164 1.0686 tatistics for current covariance components model e 4151.349217 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>									
APUD Watt O Watt O VIJ7(0) ne outcome variable is FS2 inal estimation of fixed effects with robust standard errors) Fixed Effect Coefficient Error T-ratio JNTROPT, B0 INTROPT, G00 49.951522 0.262709 0.078982 0.7 TCFL slope, B2 INTROPT2, G10 0.262709 0.015532 0.013842 1.164 38 0.7 TCFL slope, B2 INTROPT2, G20 0.015532 0.015532 0.01342 1.164 38 0.262709 0.015532 0.015532 0.01342 1.164 38 0.26270 0.015532 0.015532 0.01342 1.164 38 0.2605 0.06787 10FCPT1, 00 0.2805 0.06787 0.2805 0.06787 0.2805 0.0776 0.2805 0.088 0.290, slope, U2 0.03738 0.0144 38 52.41301								Mixe	<u>d</u> •
inal estimation of fixed effects with robust standard errors) Fixed Effect Coefficient Error T-ratio d.f. P-value or INTRCPT2, G00 49.951522 0.628235 79.511 38 0.000 or GPA slope, B1 INTRCPT2, G10 0.262709 0.078982 3.326 38 0.002 or TOEFL slope, B2 INTRCPT2, G20 0.015532 0.013342 1.164 38 0.252 inal estimation of variance components: andom Effect Standard Variance df Chi-square P-value Deviation Component f S0.27276 0.088 TOEFL slope, U1 0.26051 0.06787 38 50.48171 0.085 TOEFL slope, U2 0.03798 0.00144 38 52.41301 0.060 IVTRCPT1, R 9.16841 84.05981 tatistics for current covariance components model eviance = 4151.349217	him2 - 火王帳								
inal estimation of fixed effects with robust standard errors) Fixed Effect Coefficient Error T-ratio d.f. P-value or INTRCPT2, G00 49.951522 0.628235 79.511 38 0.000 or GPA slope, B1 INTRCPT2, G10 0.262709 0.078982 3.326 38 0.002 or TOEFL slope, B2 INTRCPT2, G20 0.015532 0.013342 1.164 38 0.252 inal estimation of variance components: andom Effect Standard Variance df Chi-square P-value Deviation Component df Chi-square P-value Deviation Component df Chi-square P-value TRCPT1, U0 3.08874 9.54029 38 50.48171 0.085 OFA slope, U1 0.26051 0.06787 38 50.27276 0.088 TOEFL slope, U2 0.03798 0.00144 38 52.41301 0.060 Ievel-1, R 9.16841 84.05981 tatistics for current covariance components model eviance = 4151.349217		レブ(H)	_						
Standard Approx. Fixed Effect Coefficient Error T-ratio d.f. P-value or INTRCPT1, B0 INTRCPT2, G00 49.951522 0.628235 79.511 38 0.000 or GPA slope, B1 INTRCPT2, G10 0.262709 0.078982 3.326 38 0.002 or TOEFL slope, B2 INTRCPT2, G20 0.015532 0.013342 1.164 38 0.252 inal estimation of variance components: andom Effect Standard Variance df Chi-square P-value Deviation Component VIRCPT1, U0 3.08874 9.54029 38 50.48171 0.085 OPA slope, U1 0.26051 0.06787 38 50.27276 0.088 OEFL slope, U2 0.03798 0.00144 38 52.41301 0.060 level-1, R 9.16841 84.05981	イル(E) 編集(E) 書式(Q) へ)								
Fixed Effect Coefficient Error T-ratio d.f. P-value or INTRCPT1, B0 INTRCPT2, G00 49.951522 0.628235 79.511 38 0.000 or GPA slope, B1 0.262709 0.078982 3.326 38 0.002 or GPA slope, B2 0.015532 0.013342 1.164 38 0.252 INTRCPT2, G20 0.015532 0.013342 1.164 38 0.252 inal estimation of variance components:	イル(E) 編集(E) 書式(Q) へ) ne outcome variable is	s FS2							
INTROPT1, B0 49.951522 0.628235 79.511 38 0.000 or GPA slope, B1 0.262709 0.078982 3.326 38 0.002 or TOEFL slope, B2 0.0115532 0.013342 1.164 38 0.252 inal estimation of variance components: andom Effect Standard Variance df Chi-square P-value Deviation Component 0.0177 38 50.48171 0.085 GPA slope, U1 0.26051 0.0144 38 52.41301 0.060 IVECPT1, R 9.16841 84.05981 98 52.41301 0.060 tatistics for current covariance components model = = = = =	イル④ 編集① 書式⓪ へ) 	s FS2 ×ed effects							
INTROPT2, G00 49.951522 0.628235 79.511 38 0.000 or GPA slope, B1 0.262709 0.078982 3.326 38 0.002 or TOEFL slope, B2 0.015532 0.013342 1.164 38 0.252 inal estimation of variance components: andom Effect Standard Variance df Chi-square P-value INTROPT1, U0 3.08874 9.54029 38 50.48171 0.085 GPA slope, U1 0.26051 0.06787 38 50.27276 0.088 TOEFL slope, U2 0.03738 0.00144 38 52.41301 0.0600 level-1, R 9.16841 84.05381 9.16841 9.16841 9.16841 eviance = 4151.349217 = = = 4151.349217	小佢 編集	s FS2 «ed effects errors)	Standard						
INTROPT2, G10 0.262709 0.078982 3.326 38 0.002 INTROPT2, G20 0.015532 0.013342 1.164 38 0.252 inal estimation of variance components: andom Effect Standard Variance df Chi-square P-value Deviation Component 0.0177 38 50.48171 0.085 GPA slope, U1 0.26051 0.00144 38 52.41301 0.060 Ievel-1, R 9.16841 84.05981 84.05981 0.00144 satistics for current covariance components model	小企 編集(2) 書式(2) へ) ne outcome variable is inal estimation of fix with robust standard e Fixed Effect	s FS2 «ed effects errors)	Standard Error	T-ratio		P-value			
INTROPT2, G20 0.015532 0.013342 1.164 38 0.252 inal estimation of variance components: andom Effect Standard Variance df Chi-square P-value Deviation Component 0.0187 38 50.48171 0.085 GPA slope, U1 0.26051 0.0677 38 50.27276 0.088 TOEFL slope, U2 0.03798 0.00144 38 52.41301 0.0600 level-1, R 9.16841 84.05981 0.0600 0.0600 tatistics for current covariance components model	イル(E) 編集(E) 書式(O) へ) ne outcome variable is with robust standard of Fixed Effect or INTRCPT1, B0 INTRCPT2, G00	s FS2 xed effects errors) Coefficient	Error		d.f.				
Andom Effect Standard Deviation Variance Component off Chi-square P-value NTRCPT1, U0 3.08874 9.54029 38 50.48171 0.085 GPA slope, U1 0.26051 0.06787 38 50.27276 0.088 TOEFL slope, U2 0.03788 0.00144 38 52.41301 0.060 level-1, R 9.16841 84.05981	イル① 編集② 書式② へ) ne outcome variable is inal estimation of fix with robust standard of Fixed Effect or INTRCPT1, B0 INTRCPT2, G10 INTRCPT2, G10	s FS2 xed effects errors) Coefficient 49.951522 0.262709	Error 0.628235	79.511	d.f. 38	0.000			
Andom Effect Standard Deviation Variance Component df Chi-square P-value NTRCPT1, 00 3.08874 9.54029 38 50.48171 0.085 GPA slope, 01 0.26051 0.06787 38 50.27276 0.088 TOEFL slope, U2 0.03798 0.00144 38 52.41301 0.0600 level-1, R 9.16841 84.05981	イル(D) 編集(D) 書式(D) へ) ne outcome variable is with robust standard of Fixed Effect or INTRCPT1, BO INTRCPT2, G00 or GPA slope, B1 INTRCPT2, G10 or TOEFL slope, B2	s FS2 ked effects errors) Coefficient 49.951522 0.262709	Error 0.628235 0.078982	79.511 3.326	d.f. 38 38	0.000 0.002			
Andom Effect Standard Deviation Variance Component off Chi-square P-value NTRCPT1, U0 3.08874 9.54029 38 50.48171 0.085 GPA slope, U1 0.26051 0.06787 38 50.27276 0.088 TOEFL slope, U2 0.03788 0.00144 38 52.41301 0.060 level-1, R 9.16841 84.05981	イル(E) 編集(E) 書式(G) へ) ne outcome variable is inal estimation of fix with robust standard of Fixed Effect or INTRCPT1, BO INTRCPT2, G00 or GPA slope, B1 INTRCPT2, G10 or TOEFL slope, B2	s FS2 ked effects errors) Coefficient 49.951522 0.262709	Error 0.628235 0.078982	79.511 3.326	d.f. 38 38	0.000 0.002			
Deviation Component NTRCPT1, U0 3.08874 9.54029 38 50.48171 0.085 GPA slope, U1 0.26051 0.06787 38 50.27276 0.088 TOEFL slope, U2 0.03798 0.00144 38 52.41301 0.060 level-1, R 9.16841 84.05981 50.4110 0.060 tatistics for current covariance components model	he outcome variable is inal estimation of fis with robust standard e Fixed Effect or INTRCPT1, B0 INTRCPT2, G00 or GPA slope, B1 INTRCPT2, G10 or TOEFL slope, B2 INTRCPT2, G20	s FS2 xed effects errors) Coefficient 49.951522 0.262709 0.015532	Error 0.628235 0.078982 0.013342	79.511 3.326	d.f. 38 38	0.000 0.002			
level-1, R 9.16841 84.05981 tatistics for current covariance components model eviance = 4151.349217	イル(E) 編集(E) 書式(Q) へ) he outcome variable is inal estimation of fix with robust standard e Fixed Effect or INTRCPT1, B0 INTRCPT2, G00 or GPA slope, B1 INTRCPT2, G10 or TOEFL slope, B2 INTRCPT2, G20	s FS2 xed effects errors) Coefficient 49.951522 0.262709 0.015532	Error 0.628235 0.078982 0.013342	79.511 3.326	d.f. 38 38	0.000 0.002			
level-1, R 9.16841 84.05981 tatistics for current covariance components model eviance = 4151.349217	イル① 編集② 書式② へ) ne outcome variable is inal estimation of fix with robust standard Fixed Effect Or INTRCPT2, G00 or GPA slope, B1 INTRCPT2, G10 or TOEPL slope, B2 INTRCPT2, G20 inal estimation of van	s FS2 xed effects errors) Coefficient 49.951522 0.262709 0.015532 riance component Standard	Error 0.628235 0.078982 0.013342 hts: Variance	79.511 3.326 1.164	d.f. 38 38 38	0.000 0.002 0.252			
level-1, R 9.16841 84.05981 tatistics for current covariance components model eviance = 4151.349217	(小(E) 編集(E) 書式(Q) へ) he outcome variable is inal estimation of fi) with robust standard of Fixed Effect or INTRCPT1, B0 or GPA slope, B1 INTRCPT2, G10 or TOEFL slope, B2 INTRCPT2, G20 inal estimation of var andom Effect	s FS2 xed effects errors) Coefficient 49.951522 0.262709 0.015532 riance component Standard Deviation	Error 0.628235 0.078982 0.013342 	79.511 3.326 1.164 df	d.f. 38 38 38 Chi-square	0.000 0.002 0.252 P-value			
eviance = 4151.349217	イル(E) 編集(E) 書式(Q) へ) he outcome variable is inal estimation of fi with robust standard of Fixed Effect or INTRCPT1, B0 or GPA slope, B1 INTRCPT2, G00 or GPA slope, B1 INTRCPT2, G10 or TOEFL slope, B2 INTRCPT2, G20 inal estimation of var andom Effect	s FS2 xed effects errors) Coefficient 49.951522 0.262709 0.015532 riance component Standard Deviation	Error 0.628235 0.078982 0.013342 hts: Variance Component 9.54029 0.06787	79.511 3.326 1.164 df 38 38	d.f. 38 38 38 Chi-square 50.48171 50.27276	0.000 0.002 0.252 P-value 0.085 0.088	_		
eviance = 4151.349217	イル(E) 編集(E) 書式(Q) へ) ne outcome variable is inal estimation of fi) with robust standard of Fixed Effect or INTRCPT1, B0 INTRCPT2, G00 or GPA slope, B1 INTRCPT2, G10 or TOEFL slope, B2 INTRCPT2, G20 inal estimation of var andom Effect NTRCPT1, U0 GPA slope, U1 TOEFL slope, U2 level-1, R	s FS2 ked effects errors) Coefficient 49.951522 0.262709 0.015532 riance component Standard Deviation 3.08874 0.26051 0.03798	Error 0.628235 0.078982 0.013342 hts: Variance Component 9.54029 0.06787 0.00144	79.511 3.326 1.164 df 38 38	d.f. 38 38 38 Chi-square 50.48171 50.27276	0.000 0.002 0.252 P-value 0.085 0.088	-		
eviance = 4151.349217	イル(E) 編集(E) 書式(Q) へ) he outcome variable is inal estimation of fi with robust standard of Fixed Effect or INTRCPT1, B0 or GPA slope, B1 INTRCPT2, G00 or GPA slope, B1 INTRCPT2, G10 or TOEFL slope, B2 INTRCPT2, G20 inal estimation of var andom Effect	s FS2 ked effects errors) Coefficient 49.951522 0.262709 0.015532 riance component Standard Deviation 3.08874 0.26051 0.03798	Error 0.628235 0.078982 0.013342 hts: Variance Component 9.54029 0.06787 0.00144	79.511 3.326 1.164 df 38 38	d.f. 38 38 38 Chi-square 50.48171 50.27276	0.000 0.002 0.252 P-value 0.085 0.088	_		
umber of estimated parameters = /	イル(E) 編集(E) 書式(Q) へ) he outcome variable is inal estimation of fix with robust standard e Fixed Effect or INTRCPT1, B0 INTRCPT2, G00 or GPA slope, B1 INTRCPT2, G10 or TOEFL slope, B2 INTRCPT2, G20 inal estimation of var andom Effect NTRCPT1, U0 GPA slope, U1 TOEFL slope, U2 level-1, R tatistics for current	s FS2 xed effects errors) Coefficient 49.951522 0.262709 0.015532 riance component Standard Deviation 3.08874 0.26051 0.03798 9.16841 covariance component	Error 0.628235 0.078982 0.013342 hts: Variance Component 9.54029 0.06787 0.00144 84.05981 mponents moc	79.511 3.326 1.164 df 38 38 38 38	d.f. 38 38 38 Chi-square 50.48171 50.27276	0.000 0.002 0.252 P-value 0.085 0.088	_		
	(ルビ) 編集(2) 書式(2) へ) the outcome variable is inal estimation of fi) Fixed Effect	s FS2 ked effects errors) Coefficient 49.951522 0.262709 0.015532 riance component Standard Deviation 3.08874 0.26051 0.03798 9.16841 covariance com-	Error 0.628235 0.078982 0.013342 hts: Variance Component 9.54029 0.06787 0.00144 84.05981 mponents moc	79.511 3.326 1.164 df 38 38 38 38	d.f. 38 38 38 Chi-square 50.48171 50.27276	0.000 0.002 0.252 P-value 0.085 0.088	-		

The top panel indicates classes differ, and that relative mean achievement (GPA) has a significant effect on positive attitudes towards peer assessment (t=3.326, p<.002). Differences between classes in relative proficiency (TOEFL) don't inform us on this issue.


We are now ready to model the impact of training learners to do peer assessment. We will add the training variable at Level 2 (COHORT) and model its impact on the differences between the 39 classes. This is known as an *intercept-as-outcomes* analysis since it examines the between-class differences controlling for the class compositional effect of prior achievement (GPA).

🚟 WHLM: hlm2 MDI	M File: peers.mdm Command File: whImtemp.hIm	- D ×
<u>File</u> <u>B</u> asic Settine		
Outcome Level-1 >> Level-2 <<	LEVEL 1 MODEL (bold: group-mean centering; bold italic: grand-mean centering) FS2 = $\beta_0 + \beta_1(GPA) + r$	<u> </u>
INTRCPT2	LEVEL 2 MODEL (bold italic: grand-mean centering)	
FAC1 FAC2	$\beta_0 = \gamma_{00} + \gamma_{01} (\text{COHORT}) + u_0$	
COHORT	$\beta_1 = \gamma_{10} + u_1$	
		Mixed
		Mixed

The COHORT (PA training) *does* have an impact; the difference between the trained and non-trained classes leads to a difference in 5.03 scaled FS2 points of attitude towards peer assessment.


ファイル(E) 編集(E) i	Brand V	v>@				
For GPA sl INTRCPT2, G1	ope, B1 0	0.303517	0.063226	4.800	38	0.000
The outcome var	iable is	s FS2				
Final estimatio (with robust st						
Fixed Effect	:	Coefficient	Standard Error	T-ratio	Approx. d.f.	P-value
For INTRO INTRCPT2, GO COHORT, GO)0)1	57.022086 -5.036348	1.301796 1.046940	43.803 -4.811	37 37	0.000 0.000
For GPA sl INTRCPT2, G1	lope, B1 10 	0.303517	0.059696	5.084	38	0.000
INTRCPT2, Gi	n of va	riance componer Standard Deviation	nts: Variance Component	 df	Chi-square	P-value

We now turn to a related question. How does PA training moderate (interact with) the average achievement effect (GPA)? Does training have a differential affect for relative high and low achievers? Each class's relative mean achievement (centered GPA) is the Level 1 covariate. The object of interest is whether the training in peer assessment moderates the effect of prior achievement (GPA) in each student's attitude toward peer assessment. Here we focus on the *slopes as outcome* model.

INTRCPT2, G10 -0.061039 0.197215 -0.310 37 0.759 COHORT, G11 0.242996 0.137463 1.768 37 0.085 The outcome variable is FS2 Final estimation of fixed effects (with robust standard errors) Fixed Effect Coefficient Error T-ratio d.f. P-value For INTRCPT1, B0 INTRCPT2, G00 49.785506 0.626446 79.473 38 0.000 For GPA slope, B1 INTRCPT2, G10 -0.061039 0.192549 -0.317 37 0.753 COHORT, G11 0.242996 0.120737 2.013 37 0.051 Final estimation of variance components: Final estimation of variance components: Random Effect Standard Variance df Chi-square P-value	<mark>/hlm2‐メモ帳</mark> ファイル(F) 編集(E) 書式(O) へ	II.⊐?(H)							
(with robust standard errors) Standard Approx. Fixed Effect Coefficient Error T-ratio d.f. P-value For INTRCPT1, B0 INTRCPT2, G00 49.785506 0.626446 79.473 38 0.000 For GPA slope, B1 -0.061039 0.192549 -0.317 37 0.753 INTRCPT2, G10 -0.242996 0.120737 2.013 37 0.051	INTRCPT2, G10	-0.061039	0.197215 0.137463	-0.310 1.768	37 37	0.759 0.085			
Standard Approx. Error Fixed Effect Coefficient Error T-ratio d.f. P-value For INTRCPT1, B0 1NTRCPT2, G00 49.785506 0.626446 79.473 38 0.000 For GPA slope, B1 INTRCPT2, G10 -0.061039 0.192549 -0.317 37 0.753 COHORT, G11 0.242996 0.120737 2.013 37 0.051 Final estimation of variance components: Random Effect Standard Variance df Chi-square P-value	The outcome variable i	s FS2							
Fixed Effect Coefficient Error T-ratio d.f. P-value For INTRCPT1, B0 INTRCPT2, G00 49.785506 0.626446 79.473 38 0.000 For GPA slope, B1 INTRCPT2, G10 -0.061039 0.192549 -0.317 37 0.753 COHURT, G11 0.242996 0.120737 2.013 37 0.051									
INTRCPT2, G00 49.785506 0.626446 79.473 38 0.000 For GPA slope, B1 INTRCPT2, G10 -0.061039 0.192549 -0.317 37 0.753 COHORT, G11 0.242996 0.120737 2.013 37 0.051 Final estimation of variance components: Random Effect Standard Variance df Chi-square P-value Deviation Component	Fixed Effect	Coefficient	Standard Error	T-ratio	Approx. d.f.	P-value			
INTRCPT2, G10 -0.061039 0.192549 -0.317 37 0.753 COHORT, G11 0.242996 0.120737 2.013 37 0.051 	INTRCPT2, GOO	49.785506	0.626446	79.473	38	0.000			
Final estimation of variance components: Random Effect Standard Variance df Chi-square P-value Deviation Component INTRCPT1, U0 3.02264 9.13633 38 77.07965 0.000 GPA slope, U1 0.17838 0.03203 37 36.89971 >.500 level-1, R 9.27751 86.07213	INTRCPT2, G10 COHORT, G11	-0.061039 0.242996	0.120737	-0.317 2.013	37 37	0.753 0.051			
Deviation Component INTRCPT1, U0 3.02264 9.13633 38 77.07965 0.000 GPA slope, U1 0.17898 0.03203 37 36.89971 >.500 level-1, R 9.27751 86.07213				df	Chi-square	P-value			
INTROPTI, U0 3.02264 9.13633 38 77.07965 0.000 GPA_slope,U1 0.17898 0.03203 37 36.89971 >.500 level-1, R 9.27751 86.07213		Deviation	Component						
	INTRCPT1, U0 GPA slope, U1 level-1, R	3.02264 0.17898 9.27751	9.13633 0.03203 86.07213	38 37	77.07965 36.89971	0.000 >.500			
	Statistics for current	= 414							

There is a just-significant effect for the training (COHORT) interacting with the between-class GPA covariate at Level 1. This implies there is a positive effect for training on mean GPA. We can visualize this impact by plotting the centered GPA by Cohort by FS2 scores:

The slopes of the trained cohort (2) classes are steeper than those of the untrained

cohort classes. We note also that the relatively lower achieving class sections have the steepest slopes. We might infer that the training regime affects some of the attitudes of the lower achieving classes more than it does for the higher achieving classes.

HLM3 Valued-Added Assessment Research. In educational policy analysis, a common goal is to assess the impact of interventions. VAA is a growth-referenced approach aiming to assess the longitudinal growth of learners nested in contexts. In this example there are three levels: 1 the growth data (repeated measures); 2 learner variables; 3 contextual (class, school, or policy) characteristics. 2121 students are in 69 classes.

HLM3

Select MDM type
Hierarchical Linear Models • HLM2 • HLM3
Hierarchical Multivariate Linear Models CHMLM CHMLM2
Cross-classified Linear Models • HCM2
OK Cancel

Note the structure of the growth data: repeated measures are *stacked* and noted for the serial order of their measurement (time) creating a vertical time-series data set.

	SS Data Editi <u>V</u> iew <u>D</u> ata		<u>A</u> nalyze	<u>G</u> raphs <u>U</u> til	ities <u>W</u> in	dow <u>H</u> el	lp									6	×
-	s 💷 🖂	a 🔚 🛛		ř =		0											
1 : sect	. 1 :4	1 44	1		4 i.u. a						1						
1 2		tb 1.0 156.0 1.0 158.0		read 80.0 80.0	time 1 2	Var	Var	Vdr	Vdr	Vdr	Vdr	Var	Var	Var	Vdr	Var	
3	1	2.0 152.0 2.0 158.0	72.0	80.0	1 2												
5	1	3.0 160.0 3.0 172.0	76.0	84.0	2												F
7	1	4.0 170.0 4.0 176.0	3 84.0	86.0	1												
9 10	1	5.0 172.0 5.0 180.0	3 86.0	86.0	1 2												F
11	1	6.0 152.0 6.0 164.0) 72.0	80.0 80.0	1												
13		7.0 156.0	0 74.0	82.0 82.0	1												F
15		8.0 150.0 8.0 154.0	70.0	80.0 80.0	2												F
17 18		9.0 154.0 9.0 156.0	72.0	82.0 82.0	2												F
19 20 21		0.0 154.0 0.0 160.0		80.0 80.0	1												F
22	1 1	1.0 142.0 1.0 154.0	74.0	76.0 80.0	2											一般	
23	1 1	2.0 152.0 2.0 162.0	3 84.0	76.0 78.0	1											- 😤 -	
25 26	1 1	3.0 154.0 3.0 162.0	78.0	80.0 84.0	1											_ 🛃 -	
27	1 1	4.0 162.0 4.0 164.0	0.08 0	78.0 84.0	1											CAPS	
29	1 1	5.0 132.0 5.0 154.0	0 74.0	54.0 80.0	2											KANA	
31 32	2 1	6.0 144.0 6.0 154.0) 72.0	76.0	1 2 2												
33 34 35	2 1	7.0 142.0 7.0 150.0 8.0 130.0	78.0	68.0 72.0 64.0	1 2												
36	2 1	8.0 146.0 9.0 138.0	70.0	76.0	1 2												
38	2 1	9.0 146.0 0.0 142.0	0 70.0	76.0	1 2												F.
	a View 🦯			74.0	1			1		1			1				 ▶
]						P	SPSS Proc	essor is r	eady						J		
	4 to mark																
	4 templa Name:	ate me										e Nam	e (use	.mdm	suffix)		-
					-					Value	added	.mam					
	Open m	dmt file	Sav	e mdmt	file	Edit	mdm	tfile		Input I	File Typ	e SP	PSSAVI	indows	3	•	-
Leve	el-1 Spe	cificatio	۱ —														
B)rowse	Leve	el-1 File	Name:									С	hoose	Variak	oles	
_ Mi	issing D	ata? —	De	lete data	a wher	n:							_				
	No () Yes	0	making	mdm	0) run	ning a	nalyse	s							
									,								
Leve	el-2 Spe	cification	۱ <u> </u>														
L L	Browse	Low	el-2 File	Name:									C	hoose	Variat	les I	
	5100056		9-2 File	ivanie.													
Leve	el-3 Spe	cification	1 —														
E	Browse	Leve	el-3 File	Name:									C	hoose	Variak	les	
		Ма	ke MDN				Che	eck Sta	its				Done				

And locate the level 1 data set designed here as an SPSS file $% \mathcal{A}$

Open Data File			? ×
ファイルの場所①:	📼 リムーバブル ディスク	(E) 🗢 🖻 👘 🎟 -	•=1
展歴 び デスクトップ マイ ドキュメント	Chester Hong Kong 06 IBC 06 KSU 06 OPI Excerpts BAAL Peer HE Personal Research SPS06	■ va1 ■ va2 ■ va3 ■ va3 サイズ: 71.4 KB	A 般 愛 ■ CAPS KAINA
ער בארב אל	ファイル名(<u>N</u>):		開((())
マイ ネットワーク	ファイルの種類(<u>T</u>): [S	SPSS/Windows files(*.SAV) ■ 読み取り専用ファイルとして開く(R)	キャンセル ヘルブ(H)

Select nesting variables (classes or sections) and the growth data at level 1.

Choose variable:	s - HLM3			
SECT	🔽 L3id	🗌 L2id	🔲 in MDM	L3id 🔽 L2id 厂 in MDM
ID	🗖 L3id	🔽 L2id	🔲 in MDM	L3id L2id in MDM
ТВ	🔲 L3id	🔲 L2id	🔽 in MDM	L3id L2id in MDM
LIS	🗖 L3id	🔲 L2id	🔽 in MDM	L3id L2id in MDM
READ	🗖 L3id	🔲 L2id	🔽 in MDM	L3id L2id in MDM
TIME	🗖 L3id	🔲 L2id	🔽 in MDM	L3id 🗖 L2id 🗖 in MDM
	🔲 L3id	L2id	🔲 in MDM	L3id L2id in MDM
	🔲 L3id	L2id	🔲 in MDM	L3id L2id in MDM
	🔲 L3id	L2id	🔲 in MDM	L3id L2id in MDM
	🔲 L3id	L2id	🔲 in MDM	L3id L2id in MDM
	🔲 L3id	L2id	🔲 in MDM	L3id L2id in MDM
	🔲 L3id	🗖 L2id	🔲 in MDM	L3id 🗖 L2id 🗖 in MDM
Page 1	of 1	•		OK Cancel

Next, the learner level data set is located and browsed.

Choose variable:	- HLM3	
SECT	✓ L3id └ L2id in MDM └ L3id └ L3id └ L2id	🔲 in MDM
ID	L3id L2id in MDM	🔲 in MDM
SEX	L3id L2id V in MDM	🔲 in MDM
SELF	L3id L2id V in MDM	🔲 in MDM
NS	□ L3id □ L2id □ in MDM □ L3id □ L2id	🔲 in MDM
MEDIA	L3id L2id V in MDM	🔲 in MDM
OTHER	□ L3id □ L2id □ INDM □ L3id □ L2id	🔲 in MDM
	🗖 L3id 🗖 L2id 🗖 in MDM 📄 🗖 L3id 🗖 L2id	🔲 in MDM
	🗖 L3id 🗖 L2id 🗖 in MDM 📄 🗖 L3id 🗖 L2id	🔲 in MDM
	🗖 L3id 🗖 L2id 🗖 in MDM 🛛 🗖 L3id 🗖 L2id	🔲 in MDM
	🗖 L3id 🗖 L2id 🗖 in MDM 📄 🗖 L3id 🗖 L2id	🔲 in MDM
	🗖 L3id 🗖 L2id 🗖 in MDM 📄 🗖 L3id 🗖 L2id	🔲 in MDM
D= = = 1		
Page 1	of 1 OK Cance	

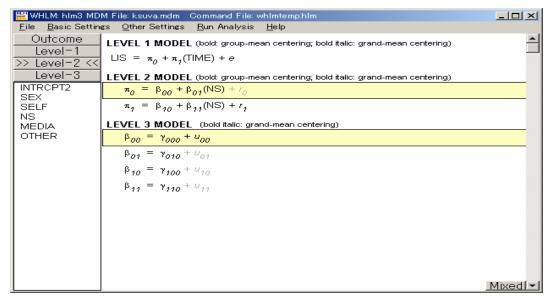
Note the left-most (common linking field) is the class section. The Level 2 key field is the student ID. The student characteristics, sex, hours of self study, hours of extra curricular contact with native speaker, hours of use of English media, and other exposure are possible covariates.

Finally, the Level 3 data set containing the context (class, teacher, syllabus focus, etc) is specified:

Choose variable:		
SECT	🔽 L3id 🔲 L2id 📄 in MDM	L3id L2id in MDM
RPREP	🔲 L3id 🔲 L2id 🔽 in MDM	L3id L2id in MDM
RHOMO	🔲 L3id 🔲 L2id 🔽 in MDM	L3id L2id in MDM
RGRAD	🗖 L3id 🥅 L2id 🔽 in MDM	L3id L2id in MDM
REXP	🔲 L3id 🔲 L2id 🔽 in MDM	L3id L2id in MDM
CPREP	🔲 L3id 🔲 L2id 🔽 in MDM	L3id L2id in MDM
СНОМО	🔲 L3id 🔲 L2id 🔽 in MDM	L3id L2id in MDM
CGRAD	🔲 L3id 🔲 L2id 🔽 in MDM	L3id L2id in MDM
CEXP	🗖 L3id 🥅 L2id 🔽 in MDM	L3id L2id in MDM
	🔲 L3id 🔲 L2id 🔲 in MDM	L3id L2id in MDM
	🗖 L3id 🔲 L2id 🔲 in MDM	L3id L2id in MDM
	🗖 L3id 🔲 L2id 🔲 in MDM	L3id L2id in MDM
Page 1	of 1 💶 🕨	OK Cancel

Note again that SECT is common to all three levels. R (reading teachers') test preparation (a self-reported dichotomy), homogeneity of materials, possession of a graduate degree, and years of experience. A parallel set of teacher characteristics are for the C (conversation) teachers.

Modeling Value-Added Outcomes


The first goal is to assess the evidence that there has been growth over the year of the program. We focus first only on Level (time) and assess the difference in LISTENING proficiency (measured by TOEIC Bridge) before and after the program.

🚟 WHLM: hlm3 MDI	M File: ksuva.mdm	- D ×
<u>F</u> ile <u>B</u> asic Settin	gs <u>O</u> ther Settings <u>R</u> un Analysis <u>H</u> elp	
Outcome Level-1 >> Level-2 <<	LEVEL 1 MODEL (bold: group-mean centering; bold italic: grand-mean centering) LIS = $\pi_0 + \pi_1$ (TIME) + e	<u> </u>
Level-3	LEVEL 2 MODEL (bold: group-mean centering; bold italic: grand-mean centering)	
INTRCPT2 SEX	$\pi_0 = \beta_{00} + r_0$	
SELF	$\boldsymbol{\pi}_{1} = \boldsymbol{\beta}_{10} + \boldsymbol{r}_{1}$	
NS MEDIA	LEVEL 3 MODEL (bold italic: grand-mean centering)	
OTHER	$\beta_{00} = \gamma_{000} + u_{00}$	
	$\beta_{10} = \gamma_{100} + u_{10}$	
		Mixed -

We focus first at the differences between the 69 class sections. Note the yellow focus bar can be moved and clicked to darken the residual r₀, to model a *random* coefficient (assumed to be generalisable). When effects are not random, they are considered sample-specific, or *fixed* effects.

፵hlm3 - メモ帳 ファイル(F) 編集(E) 書:	し、 (の) 赤	レプ(H)					_0,
Final estimation (with robust sta	n of fi>	ed effects					
Fixed Effect			Standard Error			P-value	
For TIME slo	B00 3000 pe, P1	47.688524	1.250499	38.136	68	0.000	
For INTRCPT2, INTRCPT3, G		3.703016	0.349684	10.590	4240	0.000	
Final estimation	n of lev	vel-1 and leve	el-2 varianc	e componer	nts:		
Random Effect		Standard Deviation			Chi-squar	e P-value	
INTRCPT1, level-1,	R0 E	1.27127 4.96270	24.62841				
<u>1</u>							F

The t-ratio of 38.136 shows considerable variation in listening growth between the 69 classes, and between the 2121 students (measured twice) within them. RQ: What learner characteristics at level 2 co-vary with differences in growth between classes? Hypothesis: extra curricular contact with native speakers NS (self-reported hours per week) co-varies with growth and affects between-class differences (pi0) and individual student gains over time (pi1).

The null hypothesis cannot be rejected for either effect. Self-reported contact does not affect between class differences or even growth in listening.

☑hlm3-以モ帳 ⊐=/川/E) (同集/E)	井 井(0) - ^	u ⇒(u)					
ファイル(E) 編集(E)	「小」「「「	NF 7(H)	Standard		Approx.		
Fixed Effe	ct	Coefficient	Error	T-ratio	d.f.	P-value	
For INT For INTRCP							
	, GOOO	47.728631	1.285480	37.129	68	0.000	
INTROPT3	, GO10	-0.068450	0.139239	-0.492	4238	0.623	
For INTRCP	T2, B10 , G100	3.626307	0.377542	9.605	2120	0.000	
INTROPT3		0.113948	0.105058	1.085	2120	0.279	
Final estimat Random Effect			 Variance	 df		e P-value	
		1.48718 4.55680		2120	5180.51964	4 0.000	
1							

RQ1. Do male and female students make comparable gains across classes in this program? Here a dummy code for sex replaces NS as the focus of the level 2 analysis.

IT IN A STATE OF A STA		
🞬 WHLM: hIm3 MD	M File: ksuva.mdm – Command File: whImtemp.hIm	
<u>F</u> ile <u>B</u> asic Settin	gs <u>O</u> ther Settings <u>R</u> un Analysis <u>H</u> elp	
Outcome Level-1 >> Level-2 <<	LEVEL 1 MODEL (bold: group-mean centering; bold italic: grand-mean centering) LIS = $\pi_0 + \pi_1$ (TIME) + e	-
Level-3	LEVEL 2 MODEL (bold: group-mean centering; bold italic: grand-mean centering)	
INTRCPT2 SEX	$\pi_0 = \beta_{00} + \beta_{01} (SEX) + r_0$	
SELF	$\boldsymbol{\pi}_1 = \boldsymbol{\beta}_{10} + \boldsymbol{r}_1$	
NS MEDIA	LEVEL 3 MODEL (bold italic: grand-mean centering)	
OTHER	$\beta_{00} = \gamma_{000} + u_{00}$	
	$\beta_{01} = \gamma_{010} + u_{01}$	
	$\beta_{10} = \gamma_{100} + u_{10}$	
		Mixed

<mark>》</mark> hlm3 - メモ帳						_
ファイル(E) 編集(E) 書式(Q) ^ Final estimation of f						
Fixed Effect	Coefficient	Standard Error	T-ratio	Approx. d.f.	P-value	
For INTRCPT1, P(For INTRCPT2, B00)					
INTRCPT3, G000 For SEX, B01	46.942816	0.899241	52.203	68	0.000	
INTRCPT3, G010 For TIME slope, P For INTRCPT2, B10		0.230093	2.780	2120	0.006	
INTRCPT3, G100	3.703030	0.152396	24.299	4239	0.000	
The outcome variable	is LIS					
Final estimation of f (with robust standard	ined elleste					
Fixed Effect	Coefficient		T-ratio		P-value	
For INTRCPT1, PC For INTRCPT2, B00						
INTRCPT3, GOOO □	46.942816	1.170695	40.098	68	0.000	

The t-ratio of 2.78 indicates p<.006 that there is a gender difference influencing the difference between the class sections.

Level 3 Analysis: What is the moderating influence of teachers' decision to focus on test-prep on the gains in listening between class sections?

RUN LILLA LL O MON	M File: ksuva.mdm - Command File: whImtemp.hIm	- U ×
		그비즈
	gs <u>O</u> ther Settings <u>R</u> un Analysis <u>H</u> elp	
Outcome	LEVEL 1 MODEL (bold: group-mean centering; bold italic: grand-mean centering)	-
Level-1	$LIS = \pi_0 + \pi_1(TIME) + e$	
>> Level=2 <<	$h_0 = x_0 + x_1(h_0) + e^{-1}$	
Level-3	LEVEL 2 MODEL (bold: group-mean centering; bold italic: grand-mean centering)	
INTRCPT2	$\pi_0 = \beta_{00} + r_0$	
SEX		
SELF	$\pi_{1} = \beta_{10} + r_{1}$	
NS MEDIA	LEVEL 3 MODEL (bold italic: grand-mean centering)	
OTHER	$\beta_{00} = \gamma_{000} + \gamma_{001}(\text{CPREP}) + u_{00}$	
	$\beta_{10} = \gamma_{100} + u_{10}$	
		Mixed

☑hlm3 - メモ帳 ファイル(E) 編集(E) 書式(Q) へ)	ルプ(<u>H</u>)					
Final estimation of fix (with robust standard of						
Fixed Effect	Coefficient	Standard Error			P-value	
For INTRCPT1, P0 For INTRCPT2, B00 INTRCPT3, G000 CPREP, G001 For TIME slope, P1 For INTRCPT2, B10	48.220227 -3.335821	2.013728	-1.657	67	0.102	
INTRCPT3, G100	3.702999	0.349683	10.590	4239	0.000	
Final estimation of le	vel-1 and leve	el-2 variano	e componer	nts:		
Random Effect	Standard Deviation			Chi-square	e P-value	
INTRCPT1, R0 level-1, E	1.27133 4.96270	1.61628 24.62840	2053	1723.40578	3 >.500	
<u>۲</u>						F

We can infer that the test-preparation does not have an impact on the gains at all.

RQ3: Does teacher qualification provide a value-added influence? CGrad is a dummy code for self-reported possession of an M.A/M.Ed degree or higher by each instructor. We will also include another concurrent covariate: teachers' years of experience.

🚟 WHLM: hlm3 MDI	M File: ksuva.mdm - Command File: whImtemp.hIm	
<u>F</u> ile <u>B</u> asic Settine	gs <u>O</u> ther Settings <u>R</u> un Analysis <u>H</u> elp	
Outcome Level-1	LEVEL 1 MODEL (bold: group-mean centering; bold italic: grand-mean centering)	
Level-2	$LIS = \pi_0 + \pi_1(TIME) + e$	
>> Level-3 <<	LEVEL 2 MODEL (bold: group-mean centering; bold italic: grand-mean centering)	
INTRCPT3 RPREP	$\pi_0 = \beta_{00} + r_0$	
RHOMO RGRAD	$\boldsymbol{\pi}_{1} = \boldsymbol{\beta}_{10} + \boldsymbol{r}_{1}$	
REXP	LEVEL 3 MODEL (bold italic: grand-mean centering)	
CPREP	$\beta_{00} = \gamma_{000} + \gamma_{001}$ (CGRAD) + γ_{002} (CEXP) + u_{00}	
CHOMO CGRAD	$\beta_{10} = \gamma_{100} + u_{10}$	
CEXP	. 10 . 100 10	
		Mixed -

<mark>3</mark> hlm3 - メモ帳 ファイル(E) 編集(E) 書式(Q) ヘルプ(<u>H</u>)					
Final estimation of (with robust standa						
Fixed Effect	Coefficient	Standard Error			P-value	
For INTRCPT1 For INTRCPT2, B0	00					
CGRAD, GOO CEXP, GOO2	0 42.757949 1 6.613377 2 0.120066	1.409467	4.692	66	0.000 0.000 0.386	
For TIME slope For INTRCPT2, B INTRCPT3, G100		0.349688	10.590	4238	0.000	
Final estimation of	f level-1 and lev	el-2 varianc	e componer	nts:		
Random Effect	Deviation	Variance Component		Chi-square	e P-value	
INTRCPT1, R0 level-1, E	1.27102	1.61548		1916.8701	1 >.500	
ī						

Results: Evidently there is a value-added impact for graduate education, but not for years of experience.

Good news for the Graduate School of Education!

Multi-Level models are useful for understanding the covariates of growth and can be used to assess educational policies and interventions. They work best with at least 30 level 2 units (classes, teachers or schools)

Heck, R. and Thomas, S. (2000) An Introduction to Multilevel Modeling Techniques. Mahwah, NJ: Lawrence Erlbaum Associates.

Raudenbush, S. and Bryk, T. (2002) Hierarchical Linear Modeling 2nd Ed. Thousand Oaks, CA: Sage.

Wainer, H. (2004) Introduction to value-added assessment special issue. *Journal of Educational and Behavioral Statistics* 29, 1, .pp 1-4.

Doran, H. and Lockwood, J. (2006) Fitting value-added models in R. *Journal of Educational and Behavioral Statistics 31,2*, pp 205-230.